

Marine Robots and
Dexterous Manipulation for
Enabling Autonomous
Underwater Multipurpose
Intervention Missions

Project information

This project proposes a new methodology to provide multipurpose dexterous manipulation capabilities for intervention operations in unknown, unstructured and underwater environments. In the TRIDENT project, a multipurpose generic intervention is composed of two phases:

PHASE I (Survey): The Autonomous Surface Craft (ASC) is launched to carry the Intervention Autonomous Underwater Vehicle (I-AUV) towards the area to be surveyed. Then, the I-AUV is deployed (1) and both vehicles start a coordinated survey path (2) to explore the area. The ASC/I-AUV team gathers navigation data for geo-referencing the measurements (seafloor images and multibeam bathymetry profiles). Finally, the I-AUV surfaces (3) and contacts to the end user to set-up and acoustic/optical map of the surveyed area. Using this map, the en user selects a target object (an object of interest) as well as a suitable intervention task (grasping, hooking, etc...).

PHASE II (Intervention): After selecting the target, the ASC/I-AUV team navigates towards the target position. Then, the ASC performs dynamic position (4) while keeping the I-AUV inside the USBL cone of coverage. Then, the I-AUV performs a search (5) looking for the Target of Interest (ToI). When the object appears in the robot field of view, it is identified and the I-AUV switches to free floating mode using its robotic arm as well as the dexterous hand to do the smart manipulation (6). Finally (7), the I-AUV docks to the ASC before recovery.

Project objectives

- Cooperative navigation techniques to achieve robust, high accuracy navigation (localization) of all the vehicles involved in the robotic team.
- Innovative mapping algorithms to robustly build consistent multimodal maps of the seafloor.
- Guidance and control algorithms for the team vehicles alone but also to cooperatively guide and control both vehicles in formation.
- Embedded knowledge representation framework and the highlevel reasoning agents required.
- Advanced acoustic/optical image processing algorithms to allow for feature detection and tracking.
- A redundant robotic arm endowed with a dexterous hand as an enabling technology for multipurpose manipulation underwater.
- Innovative strategies for the coordinated control of the joint AUV-Manipulator system.
- The mechatronics as well as the perception/action capabilities needed to face the autonomous docking of the I-AUV to the ASC.
- A multisensory control architecture, including a knowledge-based approach, to guarantee the suitable manipulation actions for enabling a multipurpose intervention system.

Universitat Jaume I de Castellón (Spain)

Dr. Pedro J. Sanz

Multisensory Based Manipulation Architecture

Universitat de Girona (Spain) Dr. Pere Ridao

Navigation and Mapping

Universitat de les Illes Balears (Spain)

Dr. Gabriel Oliver

Visual/Acoustic Image Processing

Dr. Claudio Melchiorri

Università di Bologna (Italy)

Mechatronics System and Control

,

Università di Genova (Italy)
Prof. Giuseppe Casalino
Floating Manipulation

Instituto Superior Técnico (Portugal)

Dr. Carlos Silvestre

Single and Multiple Vehicles Control

Heriot Watt University (United Kingdom)

Dr. Yvan Petillot

Vehicles Intelligent Control Architecture

Graal Tech (Italy)

Email: sanzp@icc.uji.es

MSc. Andrea Caffaz. Electromechanical design of the arm